morphospaces / train_swin_unetr_pixel_embedding / 0.0.9

Train SwinUnetr Pixel Embedding Network

Train the SwinUnetr pixel embedding network using the provided script and dataset.
Tags
imagingcryoetPythonnapari
Citation
Solution written by
Kevin Yamauchi and Kyle Harrington
License of solution
MIT
Source Code

Arguments

--lr
Learning rate. (default value: PARAMETER_VALUE)
--logdir_path
Path to save logs and checkpoints. (default value: PARAMETER_VALUE)
--batch_size
Batch size for training. (default value: PARAMETER_VALUE)
--patch_threshold
Patch threshold. (default value: PARAMETER_VALUE)
--loss_temperature
Loss temperature. (default value: PARAMETER_VALUE)
--pretrained_weights_path
Path to pretrained weights. (default value: PARAMETER_VALUE)
--max_epochs
Maximum number of epochs for training. (default value: PARAMETER_VALUE)
--copick_config_path
Path to the Copick configuration JSON file. (default value: PARAMETER_VALUE)
--train_run_names
Comma-separated list of Copick run names for training data. (default value: PARAMETER_VALUE)
--val_run_names
Comma-separated list of Copick run names for validation data. (default value: PARAMETER_VALUE)
--voxel_spacing
Voxel spacing to be used. (default value: PARAMETER_VALUE)
--tomo_type
Type of tomogram to process. (default value: PARAMETER_VALUE)
--session_id
Session ID for accessing Copick data. (default value: PARAMETER_VALUE)
--user_id
User ID for accessing Copick data. (default value: PARAMETER_VALUE)
--segmentation_name
Name of the segmentation to use from Copick. (default value: PARAMETER_VALUE)

Usage instructions

Please follow this link for details on how to install and run this solution.