kephale / train-unet / 0.0.11

Train UNet Model using MONAI with Multiple Runs and MLflow

Train a UNet model to predict segmentation masks using MONAI from multiple runs with MLflow tracking.
Tags
imagingcryoetPythonnapari
Solution written by
Kyle Harrington
License of solution
MIT
Source Code

Arguments

--copick_config_path
Path to the Copick configuration JSON file. (default value: PARAMETER_VALUE)
--run_names
Comma-separated list of Copick run names to process. (default value: PARAMETER_VALUE)
--voxel_spacing
Voxel spacing to be used. (default value: PARAMETER_VALUE)
--tomo_type
Type of tomogram to process. (default value: PARAMETER_VALUE)
--seg_type
Type of segmentation labels to use. (default value: PARAMETER_VALUE)
--num_epochs
Number of training epochs. (default value: 100)
--batch_size
Batch size for training. (default value: 4)
--learning_rate
Learning rate for the optimizer. (default value: 0.0001)
--experiment_name
Name of the MLflow experiment. (default value: PARAMETER_VALUE)
--debug
Enable debugging output. (default value: 0)

Usage instructions

Please follow this link for details on how to install and run this solution.