cellcanvas / train-model / 0.1.7

Train Random Forest on Zarr Data with Cross-Validation

A solution that trains a Random Forest model using data from a Zarr zip store, filters runs with only one label, and performs cross-validation.
Tags
imagingcryoetPythonnapari
Solution written by
Kyle Harrington
License of solution
MIT
Source Code

Arguments

--input_zarr_path
Path to the input Zarr zip store containing the features and labels. (default value: PARAMETER_VALUE)
--output_model_path
Path for the output joblib file containing the trained Random Forest model. (default value: PARAMETER_VALUE)
--n_estimators
Number of trees in the Random Forest. (default value: 200)
--max_depth
The maximum depth of the trees. (default value: 14)
--max_samples
The maximum number of samples to draw from X to train each base estimator. (default value: 0.495033308120533)
--min_samples_split
The minimum number of samples required to split an internal node. (default value: 2)
--min_samples_leaf
The minimum number of samples required to be at a leaf node. (default value: 1)
--class_weights
Class weights for the Random Forest model as a comma-separated list. (default value: )
--n_splits
Number of folds for cross-validation. (default value: 10)

Usage instructions

Please follow this link for details on how to install and run this solution.