About
Solution Catalog
Documentation
Tutorial
cellcanvas album catalog
sharing cellcanvas tools
cellcanvas
/
segment-tomogram-xgboost
/ 0.0.6
Predict a Multilabel Segmentation Using a Model
A solution that predicts segmentation using a model for a Copick project and saves it as 'predictionsegmentation'.
Tags
imaging
cryoet
Python
napari
Solution written by
Kyle Harrington
License of solution
MIT
Source Code
View on GitHub
Arguments
--copick_config_path
Path to the Copick configuration JSON file. (default value: PARAMETER_VALUE)
--session_id
Session ID for the segmentation. (default value: PARAMETER_VALUE)
--user_id
User ID for segmentation creation. (default value: PARAMETER_VALUE)
--voxel_spacing
Voxel spacing used to scale pick locations. (default value: PARAMETER_VALUE)
--run_name
Name of the Copick run to process. (default value: PARAMETER_VALUE)
--model_path
Path to the trained model file. (default value: PARAMETER_VALUE)
--tomo_type
Type of tomogram to use, e.g., denoised. (default value: PARAMETER_VALUE)
--feature_names
Comma-separated list of feature names to use, e.g., cellcanvas01,cellcanvas02. (default value: PARAMETER_VALUE)
--segmentation_name
Name of the output segmentation. (default value: PARAMETER_VALUE)
--write_mode
Write mode: 'deferred' writes all chunks at once, 'immediate' writes each chunk as it is computed. (default value: deferred)
Usage instructions
Please follow
this link
for details on how to install and run this solution.