cellcanvas / segment-tomogram-xgboost / 0.0.3

Predict a Multilabel Segmentation Using a Model

A solution that predicts segmentation using a model for a Copick project and saves it as 'predictionsegmentation'.
Tags
imagingcryoetPythonnapari
Solution written by
Kyle Harrington
License of solution
MIT
Source Code

Arguments

--copick_config_path
Path to the Copick configuration JSON file. (default value: PARAMETER_VALUE)
--session_id
Session ID for the segmentation. (default value: PARAMETER_VALUE)
--user_id
User ID for segmentation creation. (default value: PARAMETER_VALUE)
--voxel_spacing
Voxel spacing used to scale pick locations. (default value: PARAMETER_VALUE)
--run_name
Name of the Copick run to process. (default value: PARAMETER_VALUE)
--model_path
Path to the trained model file. (default value: PARAMETER_VALUE)
--tomo_type
Type of tomogram to use, e.g., denoised. (default value: PARAMETER_VALUE)
--feature_names
Comma-separated list of feature names to use, e.g., cellcanvas01,cellcanvas02. (default value: PARAMETER_VALUE)
--segmentation_name
Name of the output segmentation. (default value: PARAMETER_VALUE)

Usage instructions

Please follow this link for details on how to install and run this solution.