About
Solution Catalog
Documentation
Tutorial
cellcanvas album catalog
sharing cellcanvas tools
cellcanvas
/
embedding-projector
/ 0.0.2
Generate a Tensorboard projector for visualzing the embeddings
Automatically generate Tensorboard event files and launch a visualizer for it. Currently suppot zarr and npy files.
Tags
imaging
cryoet
Python
Citation
Tensorboard Team.
https://www.tensorflow.org/tensorboard
Solution written by
Zhuowen Zhao
License of solution
MIT
Source Code
View on GitHub
Arguments
--channel_first
Channel first for the embedding vectors. Default is True. (default value: 1)
--embeddings
Path to the feature vector embeddings (default value: PARAMETER_VALUE)
--labels
Path to the labels correspond to the embeddings. Labels should be (N,) shape or a flattened array. (default value: PARAMETER_VALUE)
--embed_zarr_key
Key to get the embeding zarr file. (default value: PARAMETER_VALUE)
--label_zarr_key
Key to get the label zarr file. (default value: PARAMETER_VALUE)
--label_img
Path to the npy image files corresponds to the embeddings. (default value: PARAMETER_VALUE)
--logdir
Output directory name in the current working directory/runs. Default is runs/tensorboard (default value: runs/tensorboard)
--k
Percentage of the features to visualize (<= 1000). Default is 0.01 (default value: 0.01)
--port
Port number to launch Tensorboard server. Default is 6006 (default value: 6006)
Usage instructions
Please follow
this link
for details on how to install and run this solution.